труба, испытанная давлением до предела разрыва - ορισμός. Τι είναι το труба, испытанная давлением до предела разрыва
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι труба, испытанная давлением до предела разрыва - ορισμός

Кипятильные трубы; Кипятильная труба; Циркуляционная труба

Холодная штамповка         
  • Схема волочения
  • Схема прокатки
  • Схема прессования

процесс обработки давлением листового или сортового металла, обычно осуществляемый без нагрева заготовки. При Х. ш. процесс изготовления деталей расчленяется на операции и переходы, выполняемые в специализированных штампах. Х. ш. сопровождается упрочнением, т. е. увеличением прочности металла и уменьшением его пластичности, затрудняющим деформирование в последующих операциях. Для устранения вредного влияния упрочнения применяют межоперационную термообработку (рекристаллизационный отжиг). Х. ш. позволяет получать детали высокой точности, с поверхностью хорошего качества, почти не требующие в процессе изготовления обработки резанием. Отсутствие нагрева при Х. ш. создаёт благоприятные предпосылки для механизации и автоматизации технологического процесса, что повышает производительность и улучшает условия труда.

При Х. ш. листового металла (см. также Листовая штамповка) в разделительных операциях разрушение происходит при меньшем внедрении режущих кромок инструмента в заготовку, чем при горячей штамповке листового металла, а сопротивление срезу составляет примерно 0,8 предела прочности. В формоизменяющих операциях Х. ш. листового металла на допустимую степень деформации существенное влияние оказывает упрочнение. Увеличение допустимой степени деформации в операциях Х. ш. достигается созданием оптимальных условий деформирования (схема силового воздействия, конструкция штампа, рациональная конфигурация рабочего инструмента, скорость деформирования, смазка и т.п.). При листовой Х. ш. заготовка получает разные деформации в различных участках и соответственно различное упрочнение. Сочетание рационального распределения деформаций, зависящего от размеров и формы заготовки, а также типа применяемых операций и условий их осуществления, с термическими операциями (как для всей заготовки, так и для отдельных её частей) позволяет получать наилучшие эксплуатационные свойства деталей (жёсткость, прочность, износостойкость и т.п.) при наименьшей массе деталей (облегчённые конструкции).

Х. ш. сортового металла (см. также Объёмная штамповка) разделяется на штамповку в открытых штампах, холодное выдавливание, холодную высадку (См. Холодная высадка). Объёмная Х. ш. осуществляется в штампах, аналогичных штампам объёмной горячей штамповки, обеспечивающих последовательное приближение формы заготовки к форме детали. Вследствие упрочнения процесс Х. ш. обычно расчленяется на большее число операций и переходов, чем при горячей штамповке, а для увеличения пластичности и уменьшения сопротивления деформированию используют межоперационные отжиги. При холодной объёмной штамповке в открытых штампах применяют промежуточную обрезку заусенца, что позволяет уменьшить усилие деформирования и повысить точность размеров штампуемых изделий. Удельные усилия деформирования при холодной объёмной штамповке достигают 3000 Мн/м2, что вынуждает использовать этот процесс только для изготовления деталей небольших размеров. Для уменьшения удельных усилий штамповки применяют смазку, противостоящую выдавливанию с контактных поверхностей при высоких удельных усилиях (например, минеральные масла с наполнителями в виде графита, талька, дисульфида молибдена и т.п.). Холодное выдавливание осуществляется по схемам деформирования, сходным с прессованием металлов (См. Прессование металлов). Используют прямое, обратное, боковое и комбинированное выдавливания, различающиеся направлением течения металла по сравнению с направлением смещения пуансона относительно матрицы. При комбинированном выдавливании в рабочем инструменте имеется несколько каналов, по которым металл вытекает из полости матрицы, причём могут одновременно иметь место элементы прямого, обратного или бокового выдавливания. Холодным выдавливанием получают сплошные и полые детали довольно сложной конфигурации. Схема всестороннего сжатия, при которой происходит холодное выдавливание, обеспечивает увеличение пластичности металла и позволяет получать без разрушения большое формоизменение заготовки. Упрочнение металла, возникающее при холодном выдавливании, ограничивает допустимое формоизменение и вынуждает в ряде случаев использовать межоперационные отжиги; кроме того, из-за больших удельных усилий деформирования допустимое формоизменение обычно ограничивается и прочностью инструмента. Для уменьшения удельных усилий деформирования подбирают рациональные форму и размеры инструмента, применяют различные смазки. Повышенная прочность инструмента достигается использованием высокопрочных инструментальных сталей, рациональной термообработкой пуансонов и матриц, бандажированием матриц и т.п. Из пластичных металлов и сплавов Х. ш. можно получать полые детали с толщиной стенки в десятые и даже сотые доли мм.

Наряду с традиционными методами Х. ш. всё более широкое применение получают беспрессовые виды штамповки (взрывная, электрогидравлическая, электромагнитная и т.д.).

Лит.: Романовский В. П., Справочник по холодной штамповке, 5 изд., Л., 1971.

Е. А. Попов.

Зрительная труба         
  • Орнитолог наблюдает птиц в монокуляр. 1939 г.
  • Галилея]]
  • <small>Зрительная труба с диаметром объектива 100 мм и вспомогательным оптическим каналом малой кратности диаметром 30 мм</small>
  • Юпитер-37А]]»
ОПТИЧЕСКИЙ ПРИБОР
Подзорная труба; Зрительные трубы; Галилеева зрительная труба; Монокуляр

общее название оптических приборов, предназначенных для визуального наблюдения за удалёнными предметами. К З. т. относятся подзорные трубы, Телескопы, бинокли (См. Бинокль), Перископы, Дальномеры, Прицелы, геодезические трубы и др. приборы. З. т. известны с конца 16 - начала 17 вв. В 1609 З. т. 32-кратного увеличения построил и впервые применил для астрономических исследований Г. Галилей. Отличный от галилеевского тип З. т. предложил в 1610-11 И. Кеплер (впервые построена около 1630). Основные элементы З. т. - Объектив и Окуляр. Объектив З. т. представляет собой собирающую систему (обычно из двух склеенных линз, реже - многолинзовую или зеркально-линзовую). Он даёт действительное уменьшенное и перевёрнутое изображение удалённого предмета вблизи своей фокальной плоскости. Это изображение рассматривают в окуляр, как в лупу (См. Лупа), совмещая его с фокальной плоскостью окуляра. В наиболее употребительных З. т. типа Кеплера (рис., а) окуляр также является собирающей системой и даваемое изображение оказывается перевёрнутым. Астрономические, геодезические и др. З. т., в которых ориентация изображения безразлична, построены по этой схеме. Если необходимо получить прямое изображение, между объективом и окуляром З. т. Кеплера помещают оборачивающую систему - призменную (например, в биноклях) или линзовую (в старых подзорных трубах, перископах и вообще в системах, длина которых может быть велика). Плоскость создаваемого объективом действительного промежуточного изображения в трубе Кеплера находится между объективом и окуляром, и в неё можно поместить измерительную шкалу, например перекрестие нитей, или фотопластинку. Поэтому при наблюдениях, связанных с точными измерениями, применяется только этот тип З. т. Окуляры современных кеплеровских З. т., как правило, обладают большим полем зрения, доходящим до 90-100°; в них должны быть исправлены Астигматизм, Кривизна поля, Кома и Хроматическая аберрация. Поэтому обычно такие окуляры представляют собой сложные системы из двух и более линз. З. т. типа Галилея (рис., б) даёт прямое изображение. Её окуляром служит рассеивающая линза, располагаемая перед плоскостью промежуточного действительного изображения. Подобные З. т. обладают малым углом зрения и в настоящее время употребляются редко, главным образом в театральных биноклях. Угловое Увеличение оптическое З. т. для наземных наблюдений - не выше нескольких десятков, в больших телескопах - до 500 и выше. Угол поля зрения наиболее значителен у З. т. с оборачивающей системой.

Лит.: Тудоровский А. И., Теория оптических приборов, 2 изд., ч. 1-2, М. - Л., 1948-52; Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3).

Г. Г. Слюсарев.

Ход лучей в зрительной трубе: а - труба Кеплера; б - труба Галилея. Лучи, попадающие в объектив - L1 от удалённого предмета, практически параллельны. Объектив даёт действительное перевёрнутое изображение предмета в своей фокальной плоскости FE. Расходящийся пучок лучей из точки Е падает на окуляр L2; т. к. фокальная плоскость окуляра также проходит через точку Е, то выходящий из трубы пучок параллелен побочной оптической оси окуляра. Попадая в глаз А, лучи сходятся на его сетчатке и дают действительное изображение предмета (f1 и f2 - фокусные расстояния объектива и окуляра: ω - угол, под которым предмет виден без зрительной трубы; ω' - угол, под которым наблюдается изображение предмета в трубе, tg ω'/tg ω - угловое увеличение трубы).

дымоход         
  • 200px
  • 200px
  • Франкфурте-на-Майне]] (последовательность кадров)</center>
  • 200px
  • [[Сталь]]ная дымовая труба на каркасе
  • Эффект тяги в трубе: манометры показывают абсолютное давление воздуха, поток показан светло-серыми стрелками. Рост давления в манометрах — по часовой стрелке.
  • 200px
  • 200px
  • 200px
  • 200px
  • 200px
  • русской печи]]. Его венчает керамическая дымовая труба
  • [[Флюгер]] на дымовой трубе призван защищать её от задувания
  • Оголовок дымовой трубы, типичной для фабрик царской России
  • Дымовая труба Харьковской ТЭЦ (330 метров)
ВЕРТИКАЛЬНО РАСПОЛОЖЕННОЕ ТРУБНОЕ УСТРОЙСТВО ДЛЯ ОТВОДА ПРОДУКТОВ СГОРАНИЯ В АТМОСФЕРУ
Дымоход; Печная труба; Кожух дымовой; Дымовые трубы; Труба (вытяжная)
ДЫМОХ'ОД, дымохода, ·муж. Полый канал, по которому дым проходит из печки в трубу. Дымоход завалило, и печка дымит.

Βικιπαίδεια

Циркуляционные трубы

Циркуляционные трубы (кипятильные трубы) — элементы конструкции парового котла (в основном на паровозах), которые, как понятно из названия, служат для более интенсивной циркуляции воды в котле, а также заодно служат дополнительным креплением кирпичного свода топки.

Основная проблема всех мощных паровозов заключается в том, что когда в верхней части котла вода уже нагрета до температуры испарения (от 100°С и выше), в нижней её температура составляет порядка 40-45°С. Из-за этого в обшивке котла возникают температурные напряжения, которые приводят к повышенному износу котла. Для того чтобы это устранить, и необходимо создавать повышенную циркуляцию (перемешивание) воды. Циркуляционные трубы расположены в основном пространстве топки ближе к верхней части, в зоне, где самые высокие температуры. Попадая в эти трубы, вода обращается в пар и, по закону Архимеда, перемещается наверх, увлекая за собой остальную воду, то есть действуя как водный насос. Вода устремляется из нижней части в верхнюю, вызывая новый приток и тем самым создавая циркуляцию всей воды в котле. Помимо заметного снижения тепловых напряжений в обшивке, такая принудительная циркуляция заодно заметно повышает парообразование. Несмотря на то, что парообразование происходит и в циркуляционных трубах, относительный объём полученного в них пара весьма мал, ввиду малой площади самих циркуляционных труб (например на ФД и ИС площадь этих труб составляет не более полутора процентов от общей площади нагрева котла).

Помимо своей основной функции, циркуляционные трубы заодно удерживают кирпичный свод, что особенно актуально на мощных паровозах с их большими размерами топок. Благодаря этим трубам, в кирпичах, формирующих свод, значительно снижаются внутренние нагрузки, но сами кирпичи при этом должны иметь специальную форму.

Циркуляционные трубы активно использовались на американских железных дорогах в 1910-е, но впоследствии ряд заводов стали устанавливать в топках вместо труб термосифоны. На российских паровозах циркуляционные трубы впервые появились в 1915 году — на импортированных из США паровозах серии Е. Однако в советском паровозостроении циркуляционные трубы были впервые установлены в 1931 году на первом паровозе серии ФД. До этого были попытки применить на советских паровозах термосифоны (например на некоторых паровозах Эг), но результаты эксплуатации паровозов, оборудованных ими, в Советском Союзе были неудовлетворительными, и поэтому было признано, что для советских дорог предпочтительней использование именно циркуляционных труб.

Τι είναι Хол<font color="red">о</font>дная штамп<font color="red">о</font>вка - ορισμός